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Abstract

It is well established that activation of the transcription factor signal transducer and activator of 

transcription 1 (STAT1) is required for the interferon-γ (IFN-γ)–mediated antiviral response. 

Here, we found that IFN-γ receptor stimulation also activated Unc-51-like kinase 1 (ULK1), an 

initiator of Beclin-1-mediated autophagy. Furthermore, the interaction between ULK1 and the 

mitogen-activated protein kinase kinase kinase MLK3 (mixed lineage kinase 3) was necessary for 

MLK3 phosphorylation and downstream activation of the kinase ERK5. This autophagy-

independent activity of ULK1 promoted the transcription of key antiviral IFN-stimulated genes 
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(ISGs) and was essential for IFN-γ–dependent antiviral effects. These findings define a previously 

unknown IFN-γ pathway that appears to be a key element of the antiviral response.

Introduction

Interferons (IFNs) are secreted cytokines that act as the first line of defense against viral 

infections (1). IFN-inducible activation of signal transducer and activator of transcription 1 

(STAT1) and STAT2 is important for an antiviral response associated with type I and type III 

IFNs (2). By contrast, there is little information on the signaling effectors that mediate the 

antiviral effects of the type II IFN, IFNγ(3). IFNγ initiates its biological activities by 

binding to its cognate heterodimeric cell surface receptor, composed of two ligand binding 

IFN-gamma receptor 1 (IFNGR1) subunit chains and two signal-transducing IFNGR2 chains 

(4). This interaction triggers activation of several downstream signaling events, including the 

canonical Janus kinase (JAK)-STAT1 pathway, and non-STAT pathways, such as mitogen-

activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), mechanistic target of 

rapamycin complex 2 (mTORC2), calcium/calmodulin-dependent protein kinase II 

(CaMKII), and nuclear factor kappa-B (NF-kB) cellular pathways (3,5,6,7,8). Although 

IFNγ-mediated activation of STAT1 is required for several IFNγ-dependent antiviral 

responses, some of these activities are STAT1-independent, which implies that there may be 

activation of alternate and complementary pathways by IFNγ stimulation during a viral 

infection (3).

The human serine/threonine kinase ULK1 (Unc-51-like kinase 1) is the human homolog of 

Saccharomyces cerevisiae autophagy-related protein kinase Atg1, which promotes 

autophagy (9). However, ULK1 activity is required for type I IFN-induced activation of p38 

MAPK, and for its antiproliferative effects in normal hematopoiesis and myeloproliferative 

neoplasms (9). In light of these findings, we questioned whether ULK1 could also be 

activated downstream of the type II IFNR, IFNGR, and whether ULK1 is required for IFNγ-

mediated antiviral activity. We found that IFNγ-dependent engagement of ULK1 promoted 

activation of downstream IFNγ-dependent signaling events and transcription of key antiviral 

IFN-stimulated genes (ISGs). We identified that mixed lineage kinase 3 (MLK3) interacted 

with and was phosphorylated by ULK1 after engagement of the IFNGR. This study defines 

the molecular mechanism by which ULK1 activates IFNγ-mediated antiviral responses.

Results

IFNγ treatment promotes ULK1-dependent MLK3 activation

We speculated that IFNγ activation of the IFNGR may engage ULK1, which could in turn 

interact with other cellular signaling effectors. To identify potential IFNγ-dependent binding 

partners of ULK1, we performed nano-liquid chromatography (nLC) and tandem mass 

spectrometry (MS/MS) analysis of endogenous protein-ULK1 complexes 

immunoprecipitated from untreated and IFNγ-treated KT-1 leukemia cells. We found that 

ULK1 interacted with 35 proteins under untreated conditions, 75 proteins under both 

untreated and IFNγ-treated conditions, and 34 unique proteins following IFNγ treatment for 

10 minutes (min) (Fig. 1A). Pathway and process enrichment analysis of the putative ULK1 
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interactors in KT-1 cells identified that 6 known IFNγ signaling pathway-related proteins 

bound to ULK1 after IFNγ stimulation (Fig. 1B, red asterisk and Table S1). Additionally, a 

separate pathway and process enrichment analysis of the 34 putative ULK1 interactors after 

IFNγ treatment revealed enrichment of 20 proteins associated with viral processes (Fig. 1C, 

red asterisk and Table S2) and indicated that MAP kinase kinase kinase 11 (MAP3K11, also 

MLK3) was involved in both IFNγ signaling and virus-associated processes (Table S1 and 

S2). When we probed the binding interaction between ULK1 and MLK3 by co-

immunoprecipitation followed by immunoblotting in IFNγ-sensitive KT-1 and U937 cells, 

we found that ULK1 and MLK3 interacted in both unstimulated and IFNγ-treated cells (Fig. 

2, A and B). Furthermore, in vitro kinase reactions between ULK1 and heat-inactivated 

MLK3 increased the ATP consumption in vitro (Fig. 2C), and loss of Ulk1/2 in mouse 

embryonic fibroblasts (MEFs) inhibited IFNγ-induced phosphorylation of MLK3 within its 

activation loop (10) at Thr277 and Ser281 (Fig. 2D). These data suggest that MLK3 is 

activated downstream of ULK1 during engagement of the IFNGR.

IFNγ-dependent signaling events require ULK1/2 activity

MLK3, a member of the MAP3K family, is a Ser/Thr protein kinase essential for activation 

of several MAPK signaling cascades in response to different stimuli (11,12,13). Specifically, 

in response to IFNγ MLK3 is required for the activation of the transcription factor CCAAT/

enhancer-binding protein-β (C/EBP-β) (14). However, it is not known whether MLK3 

promotes activation of MAP kinases after engagement of the IFNGR. Thus, we evaluated the 

importance of MLK3 for IFNγ-induced phosphorylation of the MAP kinases ERK5, 

ERK1/2 and JNK, using Mlk3+/+ and Mlk3−/− mouse embryonic fibroblasts (MEFs) (12). 

IFNγ-mediated activation of ERK5 by phosphorylation of the Thr-Glu-Tyr motif within the 

activation loop of its kinase domain (15) (Thr218/Tyr220) was defective in Mlk3−/− MEFs 

when compared to Mlk3+/+ MEFs (Fig. 3A). In contrast, IFNγ-induced phosphorylation of 

ERK1/2 and JNK were unaffected in Mlk3−/− cells (Fig. 3, B and C). When we examined 

whether ULK1 is required for IFNγ-dependent phosphorylation of ERK5 kinase in 

Ulk1/2+/+ and Ulk1/2−/− MEFs (16), we found that ERK5 phosphorylation in MEFs is 

defective in the absence of Ulk1/2 (Fig. 4A). However, there was some increased baseline 

phosphorylation of ERK5 in Ulk1/2+/+ MEFs compared to Ulk1/2−/− MEFs (Fig. 4A). 

Furthermore, IFNγ stimulation resulted in phosphorylation of both ERK1/2 and JNK 

kinases, as well as STAT1, independently of Ulk1/2 presence (Fig. 4, B and C and fig. S1). 

Together, our results suggest that ULK1/2 activity is required for IFNγ-mediated 

phosphorylation of MLK3, which in turn is required for IFNγ-induced activation of ERK5.

Once activated, ERK5 plays a critical role as a master regulator of transcription by 

promoting the activation of many transcription factors and protein kinases, including p90 

ribosomal S6 kinase 1 (p90RSK1) (16,17). The p90RSK1 Ser/Thr kinase modulates several 

biological processes by increasing both transcription and mRNA translation of specific 

genes (18,19,20). IFNγ-induced phosphorylation of p90RSK1 was defective in Ulk1/2−/− 

MEFs compared to Ulk1/2+/+ MEFs (Fig. 4D). Together these results suggest that ULK1/2 

may play a role in the regulation of IFNγ-induced activation of ERK5 and p90RSK1.
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ULK1/2 activity is essential for transcription of key IFNγ-inducible antiviral genes

To determine whether ULK1/2 activity was required for IFNγ-dependent gene transcription, 

we performed high-throughput single-end RNA-sequencing of total RNA isolated from 

untreated and IFNγ-treated Ulk1/2+/+ and Ulk1/2−/− MEFs. When we used 

Multidimensional scaling (MDS) on the expression of the top 500 genes in all samples to 

determine how distinct and reproducible the samples were, we found that all four biological 

replicates in each group clustered together (fig. 5A). We identified those genes that were 

differentially expressed after IFNγ treatment using edgeR (21). This analysis revealed that 

the expression of 793 genes was decreased and that of 644 genes was increased in IFNγ-

treated Ulk1/2+/+ MEFs compared to IFNγ-treated Ulk1/2−/− MEFs (Fig. 5B). Moreover, 

IFNγ treatment altered the expression of 338 genes in Ulk1/2+/+ MEFs (Fig. 5C, green 

ellipse, and fig. S2A), and 376 genes in Ulk1/2−/− MEFs (Fig. 5C, blue ellipse, and fig. 

S2B). From these, 268 common genes were differentially expressed in both groups after 

IFN-γ treatment (Fig. 5C, fig. S3, and Table S3). We also identified 70 IFN-γ-stimulated 

genes that were expressed only in Ulk1/2+/+ MEFs (Fig. 5C, fig. S4, and Table S4), and 108 

IFNγ-stimulated genes that were expressed only in Ulk1/2−/− cells (Fig. 5C, fig. S5, and 

Table S5). Gene ontology analyses were performed to classify the differentially expressed 

genes detected following IFNγ treatment in both genotypic groups, those only in Ulk1/2+/+ 

cells, and those only in Ulk1/2−/− cells among ontology clusters (fig. S6A–C and Table S6–

S8). The 268 commonly differentially expressed genes are mainly associated with processes 

involved in the defense response to virus infection, namely the innate immune response and 

antigen processing and presentation (fig. S6A and Table S6). The 70 genes differentially 

expressed only in Ulk1/2+/+ MEFs are predominantly associated with processes involved in 

immune cell differentiation, regulation of the JAK-STAT cascade, and regulation of 

inflammatory responses (fig. S6B and Table S7). By contrast, the 108 genes differentially 

expressed only in Ulk1/2−/− MEFs were predominantly associated with regulation of 

leukocyte proliferation and migration and positive regulation of the MAPK cascade (fig. 

S6C and Table S8). To closely evaluate whether the absence of Ulk1/2 affects IFNγ-

mediated expression of antiviral genes, we selected the IFNγ-inducible genes depicted in 

our gene ontology analysis (Table S6–S8) associated with antiviral processes (total 66 

genes) (22,23). From these genes, we found that expression of 46 genes was increased by 

IFNγ more in Ulk1/2+/+ MEFs than Ulk1/2−/− MEFs (Fig. 5D) and overall this difference 

was statistically significant (Fig. 5E).

To evaluate whether ULK1/2 activity was required for optimal IFNγ-dependent 

transcriptional activation of ISGs, we generated Ulk1/2+/+ and Ulk1/2−/− MEFs stably 

expressing an IFNγ activation site (GAS) element-luciferase reporter gene (GAS-LUC) and 

performed luciferase reporter assays. IFNγ-induced transcriptional activation of GAS 

elements was significantly reduced in Ulk1/2−/− cells compared to Ulk1/2+/+ cells (Fig. 6A). 

Additionally, when we examined the specific role of ULK1/2 on the expression of select 

IFNγ-inducible antiviral genes Cxcl10 (24,25), Oasl2 and Ifit3 (26,27) by qRT-PCR, we 

found that expression of these genes after IFNγ treatment was significantly decreased in the 

absence of Ulk1/2 (Fig. 6, B to D). Although the activation of ULK1 promotes induction of 

autophagy (28), treatment of Ulk1/2+/+ MEFs with the autophagy inhibitor, chloroquine, did 

not significantly affect IFNγ-mediated mRNA expression of Cxcl10, Oasl2 and Ifit3 (fig. 
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S7, A to C). Moreover, siRNA-mediated knockdown of VPS34 (PIK3C3) and Beclin-1 

(BECN1), which are necessary for ULK1-mediated autophagy (29), did not reduce IFNγ-

induced expression of antiviral ISGs in KT-1 cells (fig. S7, D to I). These results suggest that 

the key role of ULK1/2 related to IFNγ-mediated transcription of antiviral genes is 

independent of the activation of autophagy.

To determine whether ULK1 activity was also required for IFNγ-induced transcription of 

select antiviral genes in human cells, we generated KT-1 ULK1 knockout (KO) cells using 

CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 genomic editing. 

Plasmids encoding Cas9 and single-guide RNA (sgRNA) targeting the ULK1 gene (fig. S8) 

were transduced into KT-1 cells, and stably-transduced cells were selected with blasticidin 

and puromycin antibiotics. The complete absence of ULK1 protein was confirmed using 

western blot analysis and by comparing ULK1 abundance between the KT-1 parental cell 

line (ULK1 wild-type [WT]) and KT-1 ULK1 KO cells (Fig. 6E). We verified that IFNγ-

induced gene expression of the antiviral effectors CXCL10, OAS1, IFIT3, and IRF1 was 

significantly reduced in ULK1 KO cells compared to ULK1 WT cells by qRT-PCR analysis 

(Fig. 6, F to I). Together, our data suggest that ULK1 promotes antiviral-ISG transcription.

ULK1/2 kinase activity is required for IFNγ-induced antiviral responses

Because ULK1/2 expression was required for the optimal transcription of select IFNγ-

induced antiviral genes, we tested whether ULK1 was required for IFNγ-stimulated antiviral 

responses. For this, we compared the protective effects of mouse IFNγ on protection from 

encephalomyocarditis virus (EMCV)-induced cell death in Ulk1/2+/+ and Ulk1/2−/− MEFs. 

We found that cells that lacked Ulk1/2 were less responsive to IFNγ treatment than WT cells 

(Fig. 7A). Moreover, human fibrosarcoma 2fTGH cells were less sensitive to the antiviral 

effects of human IFNγ treatment against EMCV infection when treated with the ULK1 

kinase inhibitor MRT68921 (30) (Fig. 7B). Similarly, selective inhibition of ERK5 activity 

with XMD8–92 (31) resulted in a reduction of IFNγ-induced expression of the antiviral 

genes Cxcl10 and Ifit3 in Ulk1/2+/+ MEFs (Fig. 7C) and of IFNγ-induced antiviral effects in 

human 2fTGH cells (Fig. 7D). Together, these data suggest that engagement of the ULK1/2-

ERK5 pathway augments IFNγ-dependent antiviral responses (Fig. 7E).

Discussion

IFNγ is a critical immunomodulator, regulating the innate and adaptive immune responses 

to pathogen infection (32). Indeed, both IFNγ KO and IFNGR KO mice are more 

susceptible to bacterial and viral infections than their WT counterparts (33,34,35,36). 

Moreover, mice injected with a monoclonal antibody against IFNγ succumb to Toxoplasma 
gondii infection (37) and Listeria monocytogenes at higher rates (38). Distinct from the 

ability of IFNγ to influence the differentiation and activation of specific immune cell subsets 

required for pathogen clearance, IFNγ promotes apoptosis of pathogen-infected cells and 

induces the expression of type I IFNs and of several antiviral and antimicrobial genes 

(39,40). However, a comprehensive understanding of the signaling pathways activated 

downstream of the IFNGR and how these impact IFNγ-driven responses remains unclear. 

Herein we provide evidence that IFNγ-induced engagement of ULK1 was required to inhibit 
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virus infection. We found that lack of Ulk1/2 genes or pharmacological inhibition of the 

ULK1/2 kinase activity abrogated IFNγ-induced antiviral activity. This correlated with 

defective IFNγ-mediated transcription of antiviral genes in the absence of ULK1/2 activity, 

although we cannot exclude that additional pathways may participate in the induction of 

antiviral responses. Our work suggests that IFNγ-signaling involves the interaction of ULK1 

with MLK3, which was required for IFNγ-dependent phosphorylation/activation of MLK3. 

These data suggest that ULK1 likely acts upstream, either as a kinase or a scaffold protein, 

of IFNγ-activated MAPK signaling cascades. In human fibroblasts, MLK3 is required for 

both cytokine- and mitogen-induced activation of several MAPK signaling cascades 

(ERK1/2, JNK, and p38 MAPK) (41). Moreover, tumor necrosis factor (TNF)-induced 

stimulation of JNK, but not p38 MAPK or ERK1/2, is defective in Mlk3−/− MEFs when 

compared to WT cells (12). Similarly, MLK3 is required for IFNγ-driven gene expression, 

independently of ERK1/2 activation (15). Here we showed in MEFs that both Ulk1/2 and 

Mlk3 were required for IFNγ-mediated phosphorylation of ERK5, but not JNK and 

ERK1/2. These data suggest that ULK1 and MLK3 may act upstream of MEKK2, MEKK3 

or MEK5 kinases, which are known to activate ERK5 in IFNγ-stimulated cells (42). Our 

results support a model in which IFNγ-dependent engagement of ULK1 leads to 

phosphorylation of MLK3 and ERK5, which promotes transcription of antiviral ISGs and 

consequent IFNγ-induced antiviral responses that may complement the antiviral effects 

induced by the canonical JAK1/JAK2-STAT signaling.

Autophagy is a degradative process that aids the host immune response against viral 

infections, including induction of type I IFN production and activation of IFNγ-induced 

JAK-STAT signaling (43,44). Assembly of the nondegradative Atg5-Atg12/Atg16L1 

autophagy protein complex is also required for IFNγ-dependent antiviral activity (45). In 

contrast, ULK1-dependent autophagy activates a different pathway of phagophore 

nucleation that requires phosphorylation of Beclin-1 and activation of vacuolar protein 

sorting 34 (VPS34) (46). Using pharmacologic and genetic inhibition we found that 

autophagy is not required for the effects of ULK1 on IFNγ-dependent gene expression. 

Thus, multicellular organisms may have developed ways to use autophagy-related proteins 

for additional immune functions. In support of this, here we report a nondegradative role of 

ULK1 that is required for transcription of IFNγ inducible antiviral genes.

The precise mechanisms by which ULK1 or MLK3 may stimulate ERK5 phosphorylation 

remain undetermined. MEK5 is the direct upstream activator of ERK5 (47), and MEKK2/3 

(48,49,50), Cot/TPL-2 (51) and MLTK (52) are MAP3Ks that activate ERK5 in response to 

multiple stimuli. Additionally, another MAP3K, transforming growth factor β-activated 

kinase 1 (TAK1), interacts with MEKK3 and promotes its autophosphorylation in TFNα-

signaling (53). Similarly, ULK1 and/or MLK3 could act as scaffold proteins, or MAP3Ks of 

ERK5 upstream kinases after IFNγ treatment. Although p38 MAPK activity is not required 

for IFNγ-induced transcription of ISGs in MEFs (54), it is involved in the generation of 

IFNγ-inducible biological effects in different human cell types (55,56,57,58). Given that 

ULK1 promotes p38 MAPK activity downstream of the type I IFNR (9), in future studies, it 

would be of interest to evaluate whether ULK1-MLK3 interactions are required for IFNγ-

dependent activation of p38 MAPK in human cells. Viewed altogether our studies identify 

an IFN-γ−stimulated signaling cascade that is critical for expression of IFNγ-inducible 
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ISGs and antiviral responses. These findings may suggest new points of therapeutic 

intervention for the treatment of several diseases where IFNγ has proven clinical activity 

(59,60,61) or how to enhance immune checkpoint blockade where IFNγ responses are 

involved (62,63).

Materials and Methods

Cell culture

KT-1 (64) and U937 (CRL-1593.2; ATCC) cells were cultured in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (FBS) and antibiotics. 2fTGH cells (65) were 

kindly provided by Dr. George R. Stark (Cleveland Clinic) and were cultured in DMEM 

high glucose medium supplemented with 10% FBS and antibiotics. The immortalized 

Ulk1/2+/+ and Ulk1/2−/− MEFs (17) were kindly provided by Dr. Craig B. Thompson 

(Memorial Sloan-Kettering Cancer Center) and were cultured in DMEM supplemented with 

10% FBS and antibiotics. Primary Mlk3+/+ and Mlk3−/− MEFs were described previously 

(12) and were cultured in DMEM high glucose medium supplemented with 10% bovine 

growth serum, 1x L-glutamine, 1x penicillin/streptomycin solution and 8 μl of 2-

mercaptoethanol per liter of medium. All experiments were performed using primary MEFs 

between passages 2 and 4. The other cell lines were frozen at low passage in liquid nitrogen 

and were kept in culture for no longer than 8 passages. All cells were cultured at 37°C and 

5% CO2. All cells were tested for mycoplasma contamination using MycoAlert PLUS 

mycoplasma detection kit following the manufacturer’s instructions (Lonza).

Reagents

IFNγ recombinant human (# PHC4033) and mouse (# PMC4033) proteins were from Gibco 

(Life Technologies). MRT68921 dual autophagy kinase ULK1/2 inhibitor was purchased 

from Selleckchem (# S7949). Chloroquine (CQ) was purchased from Sigma-Aldrich. 

XMD8–92 was purchased from Tocris (# 4132). The Edit-R human lentiviral ULK1 

sgRNAs (# VSGH10142–246477203) and Edit-R Lentiviral hEF1α-Blast-Cas9 nuclease 

plasmid DNA (# CAS10138) were purchased from GE Healthcare Dharmacon. ON-

TARGETplus Non-targeting Control Pool siRNA (# D-001810–10-05), ON-TARGETplus 

PIK3C3 siRNA (SMARTpool: # L-005250–00-0005) and ON-TARGETplus BECN1 siRNA 

(SMARTpool: # L-010552–00-0005) were purchased from Dharmacon. Antibodies against 

ULK1 (D8H5) (#8054), MLK3 (#2817), phospho-ERK5 (Thr218/Tyr220) (#3371), ERK5 

(D3I5V) (#12950), phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (D13.14.4E) (#4370), 

p44/42 MAPK (ERK1/2) (#9102), phospho-SAPK/JNK (Thr183/Tyr185) (81E11) (#4668), 

SAPK/JNK (#9252), phospho-STAT1 (Ser727) (D3B7) (#8826), phospho-STAT1 (Tyr701) 

(D4A7) (#7649), phospho-p90RSK (Thr359/Ser363) antibody (#9344), and RSK1 (D6D5) 

(#8408) were purchased from Cell Signaling. Anti-MLK3 (phospho Thr277 + Ser281) 

antibody (#ab191530) was purchased from abcam and STAT1 p84/p91 antibody (E-23) 

(#sc-346) was from Santa Cruz Biotechnology. Antibody against GAPDH (6C5) 

(#MAB374) was purchased from EMD Millipore.
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Mass spectroscopy analyses

To identify proteins that interact with endogenous ULK1, KT-1 cells were left untreated or 

were treated with 5×103 IU/ml of human IFNγ for 10 min and then lysed in NP-40 buffer 

(20mM HEPES pH7.4, 180mM KCl, 0.2mM EGTA, 0.1% NP-40) supplemented with 

protease and phosphatase inhibitors. Three mg of protein (total cell lysates) from untreated 

and IFNγ-treated samples were used for immunoprecipitation (IP) of endogenous protein-

ULK1 complexes using ULK1 (D8H5) rabbit monoclonal antibody-conjugated to magnetic 

beads (Custom order, Cell signaling). As control, the same procedure was followed for 

IFNγ-treated lysates, but using Rabbit (DA1E) monoclonal antibody IgG XP Isotype 

control-conjugated to magnetic beads (#8726, Cell Signaling) instead of the ULK1 antibody. 

After incubating the samples overnight with rotation at 4°C, the beads were washed two 

times with NP-40 buffer and one time with washing buffer (20mM HEPES pH7.4, 180mM 

KCl, 0.2mM EGTA). Protein-ULK1 complexes were eluted from the beads by incubation 

with lane marker reducing sample buffer (Pierce) at 95°C for 10 min and proteomic analyses 

were performed in the Northwestern Proteomics Core Facility (Northwestern University, 

Chicago). IP-eluted proteins were initially separated using SDS-PAGE and cut into ten 

equivalent height bands prior to standard in-gel digestion (66). Resulting peptides were 

extracted from the gel pieces and desalted using solid phase extraction on a Pierce C18 Spin 

column, prior to elution in 40 μL of 80% acetonitrile in 0.2% formic acid. After 

lyophilization, peptides were reconstituted with 0.1% formic acid in water and injected onto 

a trap column (150 μm ID × 3 cm) coupled with a nanobore analytical column (75 μm ID × 

15 cm, both ReproSil C18aq, 3 μm). Samples were separated using a linear gradient of 

solvent A (95% water, 5% acetonitrile, 0.1% formic acid) and solvent B (5% water, 95% 

acetonitrile, 0.1% formic acid) over 60 min. nLC-MS/MS data were obtained on a Velos 

Orbitrap (Thermo) mass spectrometer. Data were searched using Mascot (Matrix Science) 

2.5 against the human SwissProt database and results were reported at 1% FDR in Scaffold 

4.5 (Proteome Software). Proteins identified by nLC-MS/MS analysis in the control group 

(Rabbit IgG) were excluded from our data analysis.

Protein function enrichment analysis

Protein lists identified in untreated and/or IFNγ-treated groups were converted to gene lists 

that were submitted to the Metascape database (67,68), a gene annotation and analysis 

resource (http://metascape.org/), for pathway and process enrichment analysis. For each 

given gene list, Metascape carries pathway and process enrichment analysis using the 

following ontology sources: GO Biological Processes, KEGG Pathway and Reactome Gene 

Sets. All genes in the genome were used as the enrichment background. Terms with p-value 

< 0.01, minimum count 3, and enrichment factor > 1.5 are collected and grouped into 

clusters based on their membership similarities. More specifically, p-values are calculated 

based on accumulative hypergeometric distribution, q-values are calculated using the 

Banjamini-Hochberg procedure to account for multiple testing. Kappa scores were used as 

the similarity metric when performing hierarchical clustering on the enriched terms and then 

sub-trees with similarity > 0.3 are considered a cluster. The most statistically significant 

term within a cluster is chosen as the one representing the cluster.
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Co-immunoprecipitation of protein-ULK1 complexes

To confirm the physical interaction between ULK1 and MLK3 identified by nLC-MS/MS 

analysis, KT-1 cells were left untreated or were treated with human IFNγ (5×103 IU/ml) for 

10 min and U937 cells were cultured overnight in serum-free RPMI 1640 medium and then 

were left untreated or were treated with human IFNγ (5×103 IU/ml) for 10 min. After 

treatment, cell pellets were lysed in NP-40 buffer (20mM HEPES pH7.4, 180mM KCl, 

0.2mM EGTA, 10% glycerol, 0.1% NP-40) supplemented with protease and phosphatase 

inhibitors. For immunoprecipitation of endogenous protein-ULK1 complexes, 200 μg of 

protein (total cell lysates) from each sample were incubated overnight at 4°C with rotation 

with ULK1 (D8H5) rabbit monoclonal antibody (1:100) (#8054, Cell signaling), followed 

by incubation for 1 hour at 4°C with rotation with protein G Sepharose 4 Fast Flow beads 

(GE Healthcare Life Sciences). As control, the same procedure was followed using Rabbit 

(DA1E) monoclonal antibody IgG XP Isotype control (#3900, Cell Signaling) instead of 

ULK1 antibody. After immunoprecipitation, the beads were washed three times with NP-40 

buffer without glycerol. Protein-ULK1 complexes were eluted from the beads by incubation 

with lane marker reducing sample buffer (Pierce) at 95°C for 10 min. Eluates were resolved 

by SDS-PAGE and processed for immunoblotting analyses.

In vitro kinase assay

Recombinant human MLK3 active protein (#M19–11G, SignalChem) was heat inactivated 

at 65°C for 20 min in a sonicating bath. To confirm heat inactivation of MLK3 recombinant 

protein, kinase reactions between MLK3 heat inactive protein (1 μg) and MBP substrate (5 

μg) (#M42–51N, SignalChem) were performed. To determine whether ULK1 can directly 

phosphorylate MLK3, kinase reactions between recombinant human ULK1 active protein 

(100 ng) (#U01–11G, SignalChem) and MLK3 heat inactive protein (1.66 μg) were 

performed. As controls, the same kinase reactions were carried out, but using each 

recombinant protein alone. For each kinase reaction we used DTT (#D86–09B, 

SignalChem), ATP (#V915A, Promega), and 5x kinase buffer (#K03–09, SignalChem) 

following the manufacturer’s instructions. Kinase mixtures were incubated for 40 min 

shaking at 300 rpm and 30°C. The ADP formed from the kinase reactions was measured 

using the ADP-Glo Kinase Assay Kit (#V6930, Promega) following the manufacturer’s 

instructions.

MEFs treatment and lysis for immunoblotting analyses

Prior to IFNγ treatment, MEFs were either cultured in 10% FBS-containing medium (for 

detection of phosphorylation of ERK5, STAT1 and ERK1/2) or starved overnight (for 

detection of phosphorylation of JNK, MLK3, and p90RSK1). MEFs were then treated with 

5×103 IU/ml of mouse IFNγ for 10 or 30 min, as indicated. After treatment, cell pellets 

were lysed with lysis buffer (50 mM HEPES pH 7.3, 150 mM NaCl, 1.5 mM MgCl2, 1 mM 

EDTA pH 8.0, 100 μM sodium fluoride, 10 μM sodium pyrophosphate, 0.5% Triton X-100, 

and 10% glycerol) supplemented with protease and phosphatase inhibitors.

Saleiro et al. Page 9

Sci Signal. Author manuscript; available in PMC 2019 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Immunoblotting analyses

Equal amounts of total cell lysates were resolved by SDS-PAGE and transferred to a 

Immobilon-P PVDF membrane (Millipore) using the Trans-Blot Turbo transfer system (Bio-

Rad). For immunoblotting analyses, the membranes were probed with primary antibodies, 

followed by horseradish peroxidase (HRP)-conjugated secondary antibodies, and antibody 

binding was detected by enhanced chemiluminescence using Amersham ECL prime western 

blotting detection reagent (GE Healthcare Life Sciences). Bands corresponding to protein of 

interest were scanned and quantified by densitometry using ImageJ software.

Library Construction and RNA-Sequencing (RNA-Seq)

Ulk1/2+/+ and Ulk1/2−/− MEFs were plated as four biological replicates and were either left 

untreated or were treated for 6 hours with 2.5×103 IU/ml of mouse IFNγ. Total RNA was 

isolated using the RNeasy Mini Kit (QIAGEN), following the manufacturer’s instructions. 

Library construction and stranded mRNA sequencing were conducted at the NUSeq Core 

Facility of Northwestern University. Briefly, RNA quality and quantity were first determined 

with the Agilent Bioanalyzer 2100 and Qubit fluorometer, and all samples presented a RNA 

integrity number of 10. Sequencing libraries were prepared from 1μg of high-quality RNA 

samples using Illumina TruSeq Stranded mRNA Library Preparation Kit (Illumina) as per 

the manufacturer’s instructions. This procedure includes mRNA purification and 

fragmentation, cDNA synthesis, 3’ end adenylation, Illumina adapter ligation, library PCR 

amplification and validation. An Illumina NextSeq 500 Sequencer was used to sequence the 

libraries with the production of single-end, 75 bp reads.

RNA-Seq reads mapping and transcript abundance estimation

Raw reads in the fastq format were controlled for quality using Trimmomatic (69). Trimmed 

reads were then aligned to the mouse genome (UCSC mm9) using TopHat v2.1.0 (70). Only 

uniquely mapped reads with a maximum of two mismatches over the whole length of the 

gene were considered for ensuing analyses. Gene annotations came from Ensembl release 

75. Exonic reads were assigned to specific genes from Ensembl release 75 using the htseq-

count script from HTSeq-0.6.1 (71).

Differential analysis of gene regulation at transcript resolution

Gene counts computed by HTSeq were used as input for edgeR (version 3.18.1) (72), which 

was used to calculate the differential expression and analyze the significances of observed 

changes between two groups using the standard edgeR workflow. Genes with Benjamini-

Hochburg adjusted p-values less than 0.01 were considered to be differentially expressed 

unless otherwise specified.

Gene clustering

RNA-Seq results are shown as a heatmap and include transcripts whose expression were the 

most significantly altered by IFNγ treatment in Ulk1/2+/+ and Ulk1/2−/− MEFs. Colored 

rectangles represent normalized total reads per million (RPM) mRNA abundance of the 

transcript. Hierarchical clustering was performed with R version 3.4.0 software using the 

heatmap.2 function and distance correlation. The intensity of the color is proportional to the 
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RPM values from each RNA-Seq measurement, as indicated on the bar next to the heatmap 

image.

Gene Set Enrichment analyses

The gene list of the differentially induced genes by IFNγ found only in Ulk1/2+/+ MEFs was 

submitted to the Metascape database (68,69) (http://metascape.org). Metascape carries 

pathway and process enrichment analysis using the following ontology sources: GO 

Biological Processes, KEGG Pathway and Reactome Gene Sets. Gene ontology functional 

analysis was conducted using default parameters.

Generation of Ulk1/2+/+ and Ulk1/2−/− cell lines stably expressing GAS luciferase reporter 
gene elements

pGF1-GAS-LUC, which expresses a puromycin selection cassette and firefly luciferase 

reporter under the control of a minimal CMV promoter followed by four tandem consensus 

GAS elements (5′-AGTTTTCATATTACTCTAAATC-3′) was purchased from System 

Biosciences (SBI). Reporter vector carrying viral particles was produced by co-transfection 

of the lentiviral plasmid and the packaging vectors into Lenti-X 293T cell line (Clontech). 

Ulk1/2+/+ and Ulk1/2−/− MEFs were infected with virus-containing fresh supernatant using 

Transdux reagent (SBI). Stably-transduced cells were selected using 2 μg/ml of puromycin 

(Gibco, Life Technologies).

Luciferase assays

Ulk1/2+/+ and Ulk1/2−/− MEFs stably expressing pGF1-GAS-LUC were plated in a 96-well 

plate (three or five replicates of 5000 cells per well) and 24 hours later were maintained in 

serum-free RPMI 1640 medium overnight. Serum-starved cells were left untreated (control) 

or were treated with 2.5×103 IU/ml of mouse IFNγ for 6 hours and then lysed using 1x 

Reporter Lysis Buffer (Promega). Luciferase assay substrate buffer (Luciferase Assay 

System # E4030, Promega) was used per the manufacturer’s instructions and luciferase 

activities were measured using a Cytation 3 cell imaging multi-mode microplate reader 

(BioTek).

Quantitative RT-PCR (qRT-PCR) analyses

To determine the effect of ULK1/2 on IFNγ-induced expression of antiviral ISGs, Ulk1/2+/+ 

and Ulk1/2−/− MEFs or KT-1 WT and KT-1 ULK1 KO cells were left untreated or were 

treated for 6 hours with 2.5×103 IU/ml of mouse or human IFNγ, respectively. To determine 

whether ERK5 is required for IFNγ-induced expression of antiviral ISGs, Ulk1/2+/+ MEFs 

were pre-incubated for 1 hour with 0.5μM of the ERK5 inhibitor XMD8–92 followed by 6 

hours of co-treatment with 2.5×103 IU/ml of mouse IFNγ. Cells were treated with vehicle-

control (DMSO) or each compound alone (controls). To define whether inhibition of 

autophagy would affect antiviral ISG expression, KT-1 cells were transfected with control, 

PIK3C3 (VPS34) or BECN1 (Beclin-1) siRNAs using Amaxa Cell Line Nucleofector Kit V 

(Lonza) following the manufacturer’s instructions and, 18 hours later, cells were either left 

untreated or were treated with 2.5×103 IU/ml of human IFNγ for 6 hours. Additionally, 

Ulk1/2+/+ MEFs were pre-incubated for 1 hour with 6μM of chloroquine (CQ) followed by 
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six hours of co-treatment with 2.5×103 IU/ml of mouse IFNγ. As controls, cells were left 

untreated or were treated with each compound alone. Total RNA was isolated using the 

RNeasy Mini Kit (QIAGEN) following the manufacturer’s instructions. 2μg of total cellular 

mRNA was reverse-transcribed into cDNA using the Omniscript RT kit (QIAGEN) and 

oligo(dT)12–18 primers (Life Technologies). Quantitative RT-PCR was carried out using an 

ABI7500 sequence detection system (Applied Biosystems) or a Bio-Rad CFX96 Real Time 

System (Bio-Rad) using commercially-available FAM-labeled primer/probe sets (Thermo 

Fisher) to determine mouse Cxcl10 (Mm00445235_m1), Ifit3 (Mm01704846_s1), Oasl2 
(Mm00496187_m1), and human CXCL10 (Hs01124252_g1), OAS1 (Hs00973635_m1), 

IFIT3 (Hs01922752_s1), IRF1 (Hs00971965_m1), PIK3C3 (Hs00176908_m1), and BECN1 
(Hs01007018_m1) mRNA expression. Mouse Gapdh (Mm99999915_g1) and human 

GAPDH (Hs02758991_g1) were used for normalization. The mRNA amplification was 

calculated as previously (9), and the data were plotted as the increase of fold change as 

compared with control samples.

CRISPR/Cas9 approach to generate ULK1 knockout KT-1 cells

KT-1 cells were transduced with Edit-R Lentiviral hEF1α-Blast-Cas9 Nuclease Plasmid 

DNA and Edit-R Human Lentiviral ULK1 sgRNA (#CAS10138 and #VSGH10142–

246477203, GE Healthcare Dharmacon). Transduction was carried out by spinoculation 

(750g) for 90 min at RT in the presence of Transdux reagent (SBI) followed by 48 hours of 

incubation. Stably-transduced cells were selected using blasticidin (5 μg/ml) and puromycin 

(2.5 μg/ml) antibiotics. One week later, antibiotic-resistant cells were separated from dead 

cells using a BD FACSAria 5-Laser Cell Sorter (BD Biosciences) and performed at the 

Northwestern University Flow Cytometry Core Facility. Lack of ULK1 protein in KT-1 

ULK1 KO cells was confirmed using western blot analysis.

Antiviral assays

Ulk1/2+/+ and Ulk1/2−/− MEFs were seeded in quadruplicate in 96-well plates overnight and 

then treated with the indicated doses of mouse IFNγ for 16 hours. Cells were subsequently 

challenged with EMCV and EMCV-induced cytopathic effects (CPEs) were determined 24 

hours later. Briefly, medium was aspirated and cells were fixed in 95% ethanol for 30 

minutes, then stained with 0.1% crystal violet in 2% ethanol for a further 30 minutes. Cells 

were then destained in 0.5M NaCl in 50% ethanol for 1 hour, then absorbance readings at 

570nm were taken to determine the extent of uninfected, viable cells. For those assays where 

the ULK1 pharmacological inhibitor MRT68921 or the ERK5 inhibitor XMD8–92 were 

included, human fibrosarcoma 2fTGH cells were seeded in quadruplicate in 96-well plates 

and then treated with either human IFNγ for 16 hours or pretreated for 2 hours with 

MRT68921 (1 μM) or with XMD8–92 (5 μM), then the medium removed and the cells 

treated with MRT68921 or XMD8–92 and human IFNγ, as indicated, for a further 16 hours. 

Cells were subsequently challenged with EMCV and EMCV-induced CPEs were determined 

24 hours later, as described above.

Statistical Analyses

PRISM v6.0 software (GraphPad Software) and SAS 9.4. software (SAS Institute Inc.) were 

used for statistical analyses. Unpaired two-tailed t test with Welch’s correction was used for 
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comparison of means between two groups, one-way analysis of variance (ANOVA) was used 

to compare means among more than two independent groups followed by Tukey’s multiple 

comparisons test, and two-way ANOVA with Bonferroni-corrected post-hoc t-tests were 

used to compare the mean differences among groups classified by two factors. Differences 

were considered statistically significant when p values were less than 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Putative binding partners of ULK1 after engagement of the IFNGR.
(A to C) Tandem mass spec analysis of protein-ULK1 complexes from untreated (UT) or 

IFNγ-treated KT-1 cells. Venn diagram (A) indicates the number of proteins that interact 

with endogenous ULK1 in UT (blue), both (black), and after 10 min’ IFNγ-treatment (red) 

conditions. Heatmap analysis (B) is of the putative binding partners of ULK1 identified in 

untreated (UT), IFNγ-treated (IFNγ), and both groups (also Table S1). Ontology analysis 

(C) is of putative ULK1 interactors identified only after IFNγ stimulation (also Table S2). 
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Note: Red rectangles and asterisks highlight (B) IFNγ signaling pathway and (C) viral 

process terms. Data are from of one experiment.
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Fig. 2. ULK1 interacts with and phosphorylates MLK3 during engagement of the IFNGR.
(A and B) Co-immunoprecipitation analysis of ULK1 interaction with MLK3 in KT-1 (A) or 

U937 (B) cells left untreated, or treated with IFNγ for 10 min, as indicated. Blots are 

representative of 3 independent experiments. (C) ADP-Glo kinase assay analysis of ADP 

concentration produced by in vitro kinase reaction of recombinant human ULK1 and heat-

inactivated MLK3 alone, or in combination. Data are means ± SEM of 3 independent 

experiments performed in triplicates. (D) Western blot analysis of pMLK3 in lysates from 

Ulk1/2+/+ and Ulk1/2−/− MEFs treated with IFNγ for 10 or 30 min, as indicated. Blots (top) 
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are representative of 5 independent experiments. Quantified data (bottom) are means ± SEM 

pooled from all experiments. *P<0.05, **P<0.01, ***P< 0.001, and NS; not significant by 

one-way ANOVA followed by Tukey’s multiple comparisons test (C) or two-way ANOVA 

using Bonferroni correction (D).
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Fig. 3. IFNγ stimulates MLK3-mediated activation of ERK5, but not ERK1/2 and JNK.
(A to C) Western blot analysis of pERK5 (A), pERK1/2 (B), and pJNK (C) in lysates from 

Mlk3+/+ and Mlk3−/− MEFs treated with IFNγ for 10 or 30 min, as indicated. Blots (left) are 

representative of 3 (C) or 4 (A,B) independent experiments. Quantified data (right) are 

means ± SEM pooled from all experiments. *P<0.05, ***P< 0.001, and NS; not significant 

by two-way ANOVA using Bonferroni’s correction.
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Fig. 4. ULK1/2 promotes IFNγ-induced phosphorylation of ERK5 and p90RSK1.
(A to D) Western blot analysis of pERK5 (A), pERK1/2 (B), pJNK (C), and p-p90RSK1 (D) 

in lysates from Ulk1/2+/+ and Ulk1/2−/− MEFs treated with IFNγ for 10 or 30 min, as 

indicated. Blots (left) are representative of 3 independent experiments. Quantified data 

(right) are means ± SEM pooled from all experiments. *P<0.05, **P< 0.01, ***P< 0.001, 

and NS; not significant by two-way ANOVA using Bonferroni’s correction.
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Fig. 5. Ulk1/2 augments IFNγ-mediated transcription of ISGs.
(A to E) RNASeq analysis of transcript expression in Ulk1/2+/+ and Ulk1/2−/− MEFs 

untreated or treated with mouse IFNγ for 6 hours, as indicated. Multidimensional (MDS) 

plot of all groups (A) and Volcano plot of differentially expressed genes after IFNγ 
treatment in Ulk1/2+/+ versus Ulk1/2−/− MEFs (B). Venn diagram (C) indicates the gene 

expression overlap existing between differentially expressed genes after IFNγ treatment in 

Ulk1/2+/+ (green ellipse) and Ulk1/2−/− (blue ellipse) MEFs. Heatmap analysis (D) of 

antiviral genes induced in Ulk1/2+/+ MEFs compared to Ulk1/2−/− MEFs by IFNγ 
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treatment. Box plot (E) of log2FC distribution of IFNγ-inducible antiviral genes in 

Ulk1/2+/+ and Ulk1/2−/− MEFs. Data are from 4 biological replicates per group (see also fig. 

S2–S6, and Table S3–S8). Statistical analyses were performed using Wilcoxon unpaired 

rank sum test.
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Fig. 6. ULK1/2 is required for IFNγ-dependent transcriptional induction of antiviral ISGs.
(A) Luciferase reporter assay analysis of GAS promoter activity in Ulk1/2+/+ and Ulk1/2−/− 

cells untreated or treated with IFNγ for 6 hours. Data are means ± SEM from 4 independent 

experiments. (B to D) qRT-PCR analysis of Cxcl10 (B), Oasl2 (C), and Ifit3 (D) mRNA 

expression in Ulk1/2+/+ and Ulk1/2−/−MEFs untreated or treated with IFNγ for 6 hours. 

Data are means ± SEM from 3 (B) or 4 (C and D) independent experiments. (E) Western 

blot analysis of ULK1 in lysate from KT-1 ULK1 KO cells generated by CRISPR/Cas9 

genome editing. Blots are representative of 3 independent experiments. (F to I) qRT-PCR 
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analysis of CXCL10 (F), OAS1 (G), IFIT3 (H), and IRF1 (I) mRNA expression in KT-1 

ULK1 WT and KT-1 ULK1 KO cells were incubated in the presence or absence of IFNγ for 

6 hours. Data are means ± SEM from 3 (F) or 4 (G to I) independent experiments. *P< 0.05, 

**P< 0.01, ***P< 0.001 by Unpaired t test (two-tailed) with Welch’s correction.
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Fig. 7. Requirement of ULK1/2 for the generation of IFNγ-dependent antiviral effects.
(A) Crystal violet viability analysis of EMCV-induced cytopathic effects in Ulk1/2+/+ and 

Ulk1/2−/− MEFs pretreated with IFNγ at the indicated doses for 16 hours and subsequently 

challenged with encephalomyocarditis virus (EMCV) for 24 hours. Data are means ± SEM 

of quadruplicate assays from 3 independent experiments. (B) Crystal violet viability analysis 

of EMCV-induced cytopathic effects in human fibrosarcoma 2fTGH cells pretreated for 2 

hours with the ULK1 kinase inhibitor MRT68921 (MRT) as indicated, then exposed to IFNγ 
for 16 hours before challenge with EMCV for 24 hours. Data are means ± SEM of 
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quadruplicate assays from 3 independent experiments. (C) qRT-PCR analysis of Cxcl10 
(left) and Ifit3 (right) mRNA expression in Ulk1/2+/+ MEFs were treated with DMSO 

(vehicle-control, C), XMD8–92 (XMD), and/or IFNγ, as indicated. Data are means ± SEM 

from 4 independent experiments. (D) Crystal violet viability analysis of EMCV-induced 

cytopathic effects in human fibrosarcoma 2fTGH cells pretreated for 2 hours with the ERK5 

inhibitor XMD8–92 (XMD) as indicated, then exposed to IFNγ for 16 hours before 

challenge with EMCV for 24 hours. Data are means ± SEM of quadruplicate assays from 3 

independent experiments. (E) Schematic illustration of the potential role of ULK1/2 in IFNγ 
signaling. *P<0.05, **P< 0.01, ****P< 0.0001 by one-way ANOVA analysis followed by 

Tukey’s multiple comparisons test (C) or two-way ANOVA with Post-hoc t-tests (A, B and 

D).
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